Drawing Package Supplement
to
ASTEROIDS DELUXE™

Operation, Maintenance and Service Manual

Contents of this Drawing Package

Game Wiring Diagram, Coin Door and Power Supply Sheet 1, Side A
Microprocessor Sheet 1, Side B
Video Generator Sheet 2, Side A
Switch Inputs, Coin Counter, LED and Audio Outputs Sheet 2, Side B

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING
CONFIDENTIAL: Reproduction forbidden without the specific written permission of Atari, Inc., Sunnyvale, CA. This drawing is only conditionally issued, and neither receipt nor possession thereof confers or transfers any right in, or license to use, the subject matter of the drawing or any design or technical information shown therein, nor any right to reproduce this drawing or any part thereof. Except for manufacture by vendors of Atari, Inc., and for manufacture under the corporation’s written license, no right to reproduce this drawing is granted or the subject matter thereof unless by written agreement with or written permission from the corporation.

© 1981 Atari, Inc.
NOTE

△ USED WITH COIN DOOR ASSY'S NOT EQUIPPED WITH TEST SWITCH.
U.S. COIN DOOR SCHEMATIC

Diagram showing the wiring and components related to the coin door mechanism, including start switches, interlocks, lights, and coin acceptor mechanisms.
U.S. X-Y POWER SUPPLY WIRING DIAGRAM
REGULATOR/AUDIO I PCB SCHEMATIC (0344)

Regulator/Audio I PCB

The Regulator/Audio I PCB has the dual functions of regulating the +5 VDC logic power to the game PCB and amplifying the audio from the game PCB.

Regulator Circuit

The regulator consists of voltage regulator Q1, current source power transistor Q3 and Q3's bias transistor Q2. The regulator accurately regulates the logic power input to the game PCB by monitoring the voltage through high-impedance inputs +SENSE and -SENSE. The inputs are directly from the +5 VDC and ground inputs to the game PCB. Therefore, the regulator regulates the voltage on the game PCB. This eliminates a reduced voltage due to IR buildup on the wire harness between the regulator and the game PCB. Variable resistor R8 is adjusted for the +5 VDC on the game PCB. Once adjusted, the voltage at the input of the game PCB will remain constant at this voltage.

Regulator Adjustment

1. Connect a voltmeter between +5 V and GND test points of the game PCB.
2. Adjust variable resistor R8 on the Regulator/Audio I PCB for +5 VDC reading on the voltmeter.
3. Connect a voltmeter between +5 V REG and GND on the Regulator/Audio I PCB. Voltage reading must not be greater than +5.5 VDC. If greater, try cleaning edge connectors on both the game PCB and the Regulator/Audio I PCB.
4. If cleaning PCB edge connectors doesn't decrease voltage difference, connect minus lead of voltmeter to GND test point of Regulator/Audio I PCB and plus lead to GND test point of game PCB. Note the voltage.

Audilo Circuit

The audio circuit contains two independent audio amplifiers. Each amplifier consists of a TDA2002AV amplifier with a gain of ten.
The High Score Memory circuit consists of an erasable reprogrammable ROM N9, latches L9, P9, N10 buffer M9, and timer N11.

N11 produces a 12KHz O-15V squarewave. This signal when +15, forward biases diode CR4 and allows capacitor C50 to charge the -29V. When it's OV, CR4 is then cut-off and CR3 is forward biased which causes C49 to develop a charge. C49 charges to approximately -28V. This is the potential required for EAROM N9 to operate.

The MPU addresses the EAROM (AB0-AB5) via latch N10, when EAADDR goes high, and data is latched into the EAROM on DB0-DB7 through latch L9.

The function of the EAROM (read, write or erase) is determined by the MPU on data lines DB0-DB3. Latch D9 receives a high EACONTROL signal from the MPU address decoder and function data is passed to the EAROM.

Data in the EAROM is read by the MPU when the EAREAD is addressed by the MPU after a reset pulse or during self-test.
AM8304B INSTEAD OF 74LS245.

HIGH SCORE CIRCUITRY

Temporary storage space for the ZPAGE (Zero Page Address). When R/WB (Read/Write) stores the data byte into the location addressed by the bus (AB0 thru AB7). When the ZPAGE reads the stored data from the addressed location.

EARADDR, when low, has the effect of selecting 2 and 3 within the EARADDR register. A high programming flex-

RAM, 6000 6800 7000 7800
Program memory for the Asteroids Deluxe™ game is contained in three ROMs.

The RAM is the temporary storage area for the MPU and is enabled when the MPU's page enable (DB0 thru DB7 at the put of the MPU's address bus) is high. The MPU has the address byte at the addressed location. The signal RAMSEL, which is 3 bits wide, selects one of the four RAM chips. This allows greater flexibility of swapping pages of RAM.
POWER INPUT

This circuitry consists of the PCB inputs and outputs for the +5 VDC logic power and 25 VAC input to the on-board regulators. The +5 VDC inputs and outputs are discussed on Sheet 1, Side A of this schematic set.

The 25 VAC inputs are received by two full wave rectifiers. Diodes CR9 and CR8 rectify the negative cycle of the input and the 7915 regulates the voltage at -15 VDC. Diodes CR9 and CR10 rectify the positive pulse of the 25 VAC input and the 7815 regulates the voltage at +15 VDC. The 7812 regulates at +12 VDC. The 7805 regulates an additional 5 VDC for the DACs. Zener diode CR12 supplies the +8.2 VDC for the sample and hold circuit. The +22V (unregulated) is used to power operational amplifiers PA11 and LA8 in the audio output.
The address decoder performs the function of turning on or enabling the appropriate circuitry at the critical time, so that information can be transferred back and forth between the game circuitry and the MPU. The memory map below is for the Asteroids Deluxe™ game.

If you are going to use the Automatic RAM/ROM Tester, please remember to remove MPU C3 and ground the WDOG DISABLE test point.
NOTE:
DO NOT USE split pads on PCB for troubleshooting purposes.

NOTE:
DO NOT USE split pads on PCB for troubleshooting purposes. If a 74LS244 is installed at location B1 and/or C1, the split pad for that location should be filled with solder. If a 74LS241 is used, the appropriate split pad should be open.

<table>
<thead>
<tr>
<th>HEXADECIMAL</th>
<th>A15</th>
<th>A14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-FF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2401</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2402</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2403</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2404</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2405</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2406</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2407</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2408</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2801</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2802</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2803</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2401</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3A00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3A00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3C08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The use of crystal Y1 and associated inverters A1 to A3, B1 to B3, C1 to C3, and D1 to D3 provides the frequencies necessary for the MPU.

The watchdog timer counter causes an interrupt from the MPU every 4 msec. The interrupt is derived from the 6 MHz crystal by dividing the frequency by 12 through counter C4. The interrupt will occur when pin 6 of inverter B4 goes low. During power-up, the counter is disabled by the RESET signal. During self-test, the NMI signal is ignored.

NOTE:
Either a 74LS245 or an AM8304B may be used at the interfaces. See block diagrams for details.

RESERVED FOR USE IN IMPLEMENTATION OF SELF-TEST OPTIONS.
The clock circuit consists of 2 inverters and counters C3 and C4. The crystal frequency down to 1.2096 MHz is used in the Asteroids Deluxe™ game.

NOTE:
The MPU in this game operates at a frequency of 1.5 MHz. Therefore the MPU chip must be the 6502A. The 6502's maximum frequency is 1 MHz and is not compatible with this game.

POWER RESET AND WATCHDOG COUNTER

During initial power-up, the delayed charging of capacitor C22 causes a preset of flip-flop D3 and a clear of counter D4. This results in holding the RESET input to the MPU low. When the charge of C22 reaches about 1.5 VDC, preset and clear inputs are removed. Counter D4 counts to 128 at 3-KHz rate, and RESET is removed (goes high) from the input of the MPU. This allows the logic power input to the PCB to stabilize before allowing the MPU to begin its initialization routine.

If the MPU program is operating properly, the MPU address decoding circuitry will output the WDCLR (Watchdog clear) signal at predetermined intervals. This serves to clear counter D4 before it counts up to the state that will create the RESET condition. If the MPU program strays from its intended sequence and does not output the WDCLR signal, counter D4 will count up to the RESET state and cause the MPU to return to its initialization routine.
DACX1 thru UNMDACX10 (X-axis unmultiplexed digital-to-analog converter signals) are transferred and stored at the output of the DACs on each rising edge of the 8-MHz clock (from the master clock circuitry). The DACX1 thru DACX10 signals are digital-to-analog converters (DACs) in the X video output. DACX1 and DACX10 outputs represent the physical placement on the monitor. The far left of the monitor screen is 0, the center is 512, and the far right is 1023. Therefore, if the DACX1 thru DACX10 signal was greater than 1023, the monitor beam would go off the side of the screen and start again on the left side of the screen, creating a "wraparound" condition. To prevent a wraparound, the "wraparound" select input from UNMDACX11 goes high when the DACX1 thru DACX10 signal is greater than 1023 or less than 0. This selects UNMDACX12 to demultiplex the DACs, forcing all zeros or all ones on the "wraparound" output, thus keeping the beam on the appropriate side of the screen or allowing it to wraparound.

0 and YVLD (X and Y valid) outputs from the X- and Y-counter multiplexers are latched (F10) and gated together to X axis output, BVLD (beam valid).

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING:
CONFIDENTIAL. Reproduction forbidden without the specific written permission of Atari, Inc., Sunnyvale, CA. This drawing is only conditionally issued, and neither reproduction nor possession thereof confers or transfers any right in, or license to use, the subject matter of the drawing or any design or technical information shown therein, nor any right to reproduce the drawing or any part thereof. Except for manufacture by vendors of Atari, Inc., and for manufacture under the corporation's written license, no right to reproduce this drawing is granted or the subject matter thereof unless by written agreement with or written permission from the corporation.

Sheet 2, Side A
ASTEROIDSD DELUXE™
Video Generator
Section of 036471-01 and -02 D

© 1981 Atari, Inc.
X- AND Y-POSITION COUNTERS

The UNDACX1 analog converters are two identical circuits. Therefore, the description discusses only the X-position counters.

The X-position counters contain rate multipliers (J8 and K8), counters (C9, D9, and E9), and multiplexers (C10, D/E10, E10), latch associated gates (B8 and H10). The output of the down/up 12-bit binary number represents the horizontal location on the monitor screen (X-axis), with 0 being the far left screen and 1023 being the far right side of the screen. Decreasing this binary number output will cause the beam to go to the right or left, respectively. The vector generator reads instructions from its memory, and then causes that data to alter the binary count of these counters in such a way that the machine can preset these counters to an entirely different location from their previous contents. This will cause the beam to move to a new location on the monitor screen instantaneously, i.e., new vector from a different starting position than where the vector ended. While the beam is “jumping” to this new beam itself is turned off to prevent unwanted lines from appearing on the screen. To preset this new position into the counters, the generator causes LOSTROBE to go low. At this time, a new 12-bit number (DVX0-11) is loaded into the counters from the vector generator memory data latches. The state machine can also instruct these counters to count up or down any specific number of counts. This will cause the beam to move to the right or to the left at a specific distance relative to where it was before. During this beam movement, the beam is turned on with the desired intensity. This is the procedure used to draw a vector on the monitor screen. The direction (to the left or right) and length (0 to 1023) of the vector to be drawn relative to the beam's current position is determined by DVX0-11 (from the vector generator memory data latches). This data contains information that determines how many clock pulses the counters will receive and whether the counters will count up or down.

DVX0-9 memory data is loaded into rate multipliers J8 and K8. The function of these devices is to space the desired number of counter clock pulses at equal intervals over the time period that it will take to draw the desired vector. This insures that vectors of different lengths will still be displayed with the same relative beam intensity. DVX10 and 11 are loaded directly into the counters. DVX10 determines whether the counters count up or down. DVX11 determines the quadrant of the vector being drawn.

The DACX1 analog converters are two identical circuits. Therefore, the description discusses only the Y-position counters.

The DACX1 DACs are designed to drive the dual output (L10, L11) of the DAC at a rate determined by the signal applied to the DACX101 output of the DAC. The DACX10 output is used to control the intensity of the beam on the screen. DACX10 and DACX11 are multiplexers that select one of the two DAC outputs to be used for the beam intensity. The output of DACX10 and DACX11 is then passed through the latch associated gates (B8 and H10) and fed to the beam or vector generator memory data latches. The state machine can also instruct these counters to count up or down any specific number of counts. This will cause the beam to move to the top or to the bottom at a specific distance relative to where it was before. During this beam movement, the beam is turned on with the desired intensity. This is the procedure used to draw a vector on the monitor screen. The direction (up or down) and length (0 to 1023) of the vector to be drawn relative to the beam's current position is determined by DVX0-11 (from the vector generator memory data latches). This data contains information that determines how many clock pulses the counters will receive and whether the counters will count up or down.

DVX0-9 memory data is loaded into rate multipliers J8 and K8. The function of these devices is to space the desired number of counter clock pulses at equal intervals over the time period that it will take to draw the desired vector. This insures that vectors of different lengths will still be displayed with the same relative beam intensity. DVX10 and 11 are loaded directly into the counters. DVX10 determines whether the counters count up or down. DVX11 determines the quadrant of the vector being drawn.

The UNDACX1 analog converters are two identical circuits. Therefore, the description discusses only the Y-position counters.

The UNDACX1 DACs are designed to drive the dual output (L10, L11) of the DAC at a rate determined by the signal applied to the DACX101 output of the DAC. The DACX10 output is used to control the intensity of the beam on the screen. DACX10 and DACX11 are multiplexers that select one of the two DAC outputs to be used for the beam intensity. The output of DACX10 and DACX11 is then passed through the latch associated gates (B8 and H10) and fed to the beam or vector generator memory data latches. The state machine can also instruct these counters to count up or down any specific number of counts. This will cause the beam to move to the top or to the bottom at a specific distance relative to where it was before. During this beam movement, the beam is turned on with the desired intensity. This is the procedure used to draw a vector on the monitor screen. The direction (up or down) and length (0 to 1023) of the vector to be drawn relative to the beam's current position is determined by DVX0-11 (from the vector generator memory data latches). This data contains information that determines how many clock pulses the counters will receive and whether the counters will count up or down.

DVX0-9 memory data is loaded into rate multipliers J8 and K8. The function of these devices is to space the desired number of counter clock pulses at equal intervals over the time period that it will take to draw the desired vector. This insures that vectors of different lengths will still be displayed with the same relative beam intensity. DVX10 and 11 are loaded directly into the counters. DVX10 determines whether the counters count up or down. DVX11 determines the quadrant of the vector being drawn.

The UNDACX1 analog converters are two identical circuits. Therefore, the description discusses only the Y-position counters.

The UNDACX1 DACs are designed to drive the dual output (L10, L11) of the DAC at a rate determined by the signal applied to the DACX101 output of the DAC. The DACX10 output is used to control the intensity of the beam on the screen. DACX10 and DACX11 are multiplexers that select one of the two DAC outputs to be used for the beam intensity. The output of DACX10 and DACX11 is then passed through the latch associated gates (B8 and H10) and fed to the beam or vector generator memory data latches. The state machine can also instruct these counters to count up or down any specific number of counts. This will cause the beam to move to the top or to the bottom at a specific distance relative to where it was before. During this beam movement, the beam is turned on with the desired intensity. This is the procedure used to draw a vector on the monitor screen. The direction (up or down) and length (0 to 1023) of the vector to be drawn relative to the beam's current position is determined by DVX0-11 (from the vector generator memory data latches). This data contains information that determines how many clock pulses the counters will receive and whether the counters will count up or down.

DVX0-9 memory data is loaded into rate multipliers J8 and K8. The function of these devices is to space the desired number of counter clock pulses at equal intervals over the time period that it will take to draw the desired vector. This insures that vectors of different lengths will still be displayed with the same relative beam intensity. DVX10 and 11 are loaded directly into the counters. DVX10 determines whether the counters count up or down. DVX11 determines the quadrant of the vector being drawn.
The purpose of the vector timer is to time out the length of time it takes to "draw" an actual vector on the monitor display. During the interval when the X- and Y-position counters are actually drawing the vector, STOP is high. This prevents the vector-generator state machine from advancing to its next state until the vector currently being drawn is completed. As soon as the vector has been drawn, STOP goes low, allowing the state machine to advance to the next state in its intended sequence.

The vector timer consists of multiplexer F5, decoder E6, latch M6, adder M5, and counters B6, C6, and D6. M6 contains a scale factor which is added in M5 to the four timer signals. If TIMER0 thru TIMER3 inputs are any state but all high, decoder E6 directly decodes the sum and loads the decoded low into one of the counters. When GO goes low, the counters count from the loaded count until the counters all reach their maximum count. This count is a maximum length of 1024. At this time STOP goes low and clears the GO flip-flop of the state machine.

If the TIMER signals are all high, ALPHANUM goes low and data signals DVX11 and DVY11 are decoded by decoder E6. This is added to the scale factor and loaded into the counters.

The X- and Y-position signals (F10), and associated counters is a 12-bit version of the beam origin left side of the screen. Increasing or decreasing the beam to move to the state machine decodes the state of using the beam in one of two ways.

The state machine number from their "jump" to a new location for drawing a new vector from the previous vector position, the beam position appearing on the screen, the state generator...
The state machine is the "master controller" of the vector-generator circuitry. It receives instructions from the game MPU, via the vector generator RAM. It carries out these instructions by accessing the appropriate sections of the vector-generator ROM memory, using the vector-generator program counter to do so. The state machine reads the vector-generator ROM data (via Timer 0-3) and decodes this information to determine how it should use this data: 1) to draw a vector; 2) to move the monitor beam to a new position on the monitor display; 3) to “jump” to a new vector memory address; 4) to return to a previous vector memory address; or 5) to tell the game MPU that it has completed its current instructions, and is waiting for its next command.

The state machine consists of input gates B8 and E5, ROM C8, latch D8, clock circuitry A6, and decoder E8. Four-bit input TIMERO thru TIMER3 is the operation-code input to the state machine. The A4 thru A6 address input to ROM C8 tells the ROM which instructions to perform. Address inputs A0 thru A3 from latch D8 tells the ROM which state was last performed. The address A7 input G0 tells the ROM that the position counters are presently drawing a vector. The HALT input to A7 tells the ROM that the vector generator has completed its operations.

During initial power-up of the game, the HALT signal is preset low. The microcomputer reads the high HALT signal through its switch input port (sel/mux L10) on data line D8. This tells the microcomputer that the vector generator is halted and waiting for an instruction. To ensure that the beam is off when the state machine is halted, the high HALT, clocked through latch D8, results in a low BLANK to the Z-axis output.

The microcomputer outputs an address that results in a DMAGO signal that causes HALT to go high, and clears the vector-generator data latches. This makes TIMER0 thru TIMER3 signals all low. The state machine now begins executing instructions, starting at vector memory location 0.

When the state machine receives the operation code for a HALT instruction, it outputs a low HALTSTROBE, setting the HALT flip-flop A9, and suspending state machine operation.

The GO signals load and enable the vector timer and the X and Y position counters and tell the ROM that the vector generator is now actively drawing a vector. The HALT input to GO flip-flop A9 sets the outputs to ensure that the vector timer and position counters are not active when the state machine is halted. When a low GOSTROBE is clocked through A9, the vector timer and X- and Y-position counters begin to operate from the GO, GO and GO signals. When STOP is clocked through A9, the vector timer has reached its maximum count, and GO goes high. This means the vector has been drawn.

The VGCK input to the clock circuitry is a buffered 1.5MHz clock signal from the microcomputer. This is the same frequency used to clock the MPU of the microcomputer. The signal clocks latch D8 unless the microcomputer is addressing the vector RAM or ROM memories (when VMEM goes low). Then the clock input to latch D8 goes high and stays high until VMEM goes high.
Counters F4, H4, and J4 contain the address of the next data byte (instruction) to be fetched from the Vector Generator memory. Because these counters point to the next instruction in memory to be retrieved and performed, they are called the program counter. This program counter is incremented one count (to the next sequential address) each time the information at its current address is loaded into data latch 0 or data latch 2.

The program counter may also be preset to "return" to a previous address which it had stored in its "stack". The stack consists of register files F3, H3, & J3, and down/up counter K4. The stack is a 4-word 12-bit memory, used to save the contents of the program counter for future reference. It is loaded when DMAPUSH is low. Immediately after information is written into the stack, counter K4 increments one count. Immediately before loading the program counter from the stack, counter K5 decrements one count.

STATE MACHINE
The address selector consists of multiplexers F2, H2, J2 and K2. When VMEM is low, the MPU of the microcomputer gains access to the address inputs of the vector generator memory. In this state, BUFFEN is from $\Phi 2$ and VW (vector generator write) is low when $\Phi 2$ and R/WB are both low. When VMEM is high, the address input to the vector generator memory is from the vector generator program counter and state machine. In this state, BUFFEN and VW are both held high by the pullup resistors connected to the 2B and 3B inputs of multiplexer K2.

Address decoder L2 decodes address bits A11 and A12, and selects the RAM or one of three ROMs of the vector-generator memory.

This address-selecting arrangement allows the game MPU to access the vector-generator memory, i.e., write data into the vector-generator RAM to instruct the vector generator what it should do next. The address selector can then allow the vector-generator program counter and state machine to access this same area of RAM also, and read what instructions were sent to it by the game MPU.
The data latches consist of latch 0 (H6), latch 1 (F6), latch 2 (J6), and latch 3 (K6). Inputs DDMA0 thru DDMA7 are the data outputs from the vector-generator memory.

Latches 0 thru 2 are directly clocked by the rising edge of the LATCH0, LATCH1, and LATCH2 outputs from the vector generator's state machine. Latch 3 is clocked by LATCH3 or by LATCH0, if ALPHANUM is low. Latch 0 is cleared when RESET, DMAG0, or ALPHANUM goes low. Latch 1 is cleared by ALPHANUM.
Turns transistor Q3 off. This allows the scale inputs to be passed through transistor Q2. When BLANK goes low, a low is clocked through K9, transistor Q3 turns on, and the signal is grounded at the base of transistor Q2.

The scale inputs at the base of transistor Q1 determine Q1's emitter voltage, during the line draw period. The SCALE0 thru SCALE3 resistors R36 thru R39, resistor R35, and resistor R40 result in a range of about +1.0 VDC when all are low and +4.0 VDC when all are high. The emitter of Q1 follows at about +1.7 to 4.7 VDC, while the emitter of transistor Q2 follows at about +1.0 to 4.0 VDC. This output is applied to the Z input of the monitor. Since there are brightness and contrast controls in the monitor, there are no adjustments in this circuit.

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING

CONFIDENTIAL: Reproduction forbidden without the specific written permission of Atari, Inc., Sunnyvale, CA. This drawing is only conditionally issued, and neither receipt nor possession thereof confers or transfers any right in, or license to use, the subject matter of the drawing or any design or technical information shown therein, nor any right to reproduce this drawing or any part thereof. Except for manufacture by vendors of Atari, Inc., and for manufacture under the corporation's written license, no right to reproduce this drawing is granted or the subject matter thereof unless by written agreement with or written permission from the corporation.

Sheet 2, Side B

ASTEROIDS DELUXE™

Switch Inputs, Coin Counter, LED and Audio Outputs
The circuitry within the dotted lines is optional circuitry for DAC 6012 at positions B11 and D11.

\[\text{\textbullet denotes change by indicated revision} \]

\[\text{\triangle Denotes a test point} \]
The EXPLODE sound is heard when any object explodes. Noise is sampled at a frequency determined by P7, and control bits EXPITCH0 and EXPITCH1. Changing the sampling rate changes the pitch of the explosion. The noise is amplitude-modulated in R6 by EXPAUDE-EXPAUD3.
VIDEO INVERTER

The x- and y-video inverter circuits are identical; therefore, only the x-video inverter circuit is explained. For invertered video operation, pin 19 is grounded which turns on transistor Q13 and turns off transistor Q12. In this state INV is +8.2 VDC and NONINV is -8.2 VDC.

For a noninverted video output, pin 19 is unconnected and floats. In cocktail games, pins 19 and 7 are shorted and have a potential of +5 VDC. This causes transistor Q13 to be cut off and transistor Q12 to be turned on. INV is then -8.2 VDC and NONINV is approximately +8.2 VDC.

In upright games, only the x-video inverter is used. In cocktail games both x- and y-video inverters are used, and in cabaret games video inversion is not necessary, so neither is used.
DIAG STEP (diagnostic step), 3 KHz, SELF-TEST SLAM, HALT, FIRE, and SHIELDS inputs are read by the MPU when SINPT (switch input zero enable) is low. Switches to be read are selected by AB0 thru AB2 from the MPU. All inputs are read on DB7. Switch inputs are active when pulled to ground. DIAG STEP, 3 KHz, and SELF-TEST are signals read by the MPU to initiate and control the game’s self-test procedure. SLAM is a signal read by the MPU to indicate the status of the anti-slam switch mounted on the coin door. The MPU reads HALT to determine the state of the vector generator.

The coin door and some control panel switches are read by the MPU when SINPT (switch input one enable) is low. Switches to be read are selected by AB0 thru AB2 from the MPU. All inputs are read on data line DB7. Switch inputs are “on” when pulled to ground.

The game option switches are read by the MPU when OPTS (option switch enable) is low. Switch toggles to be read are selected by AB0 and AB1 from the MPU. Switch toggles 1, 3, 5 and 7 are read on data line DB0 and toggles 2, 4, 6 and 8 are read on DB1. Toggle inputs are “on” when pulled to ground.
The Custom Audio chip M7/8 generates most of the sounds for Asteroids Deluxe™.

R/W determines the direction of data flow (DB0-DB7) as addressed by AB0-AB3. When R/W is high, the MPU reads the input data from DIP switch L8. When R/W is low, the MPU writes the audio I/O instruction for an output.

The φ2 input from the MPU is the operating frequency for the audio I/O chip and sets the timing for data bus lines DB0-DB7.

When PKYDCD, AB10, and AB11 are high and AB6 is low, a chip select pulse is gated to the audio I/O chip. This pulse prepares the audio I/O for operation.
This circuit consists of coin counter drivers Q8, Q9, Q10 and data latch M10, clocked by the microcomputer's address decoder. When the input to a driver is clocked high, its collector goes low, grounding the return of the coin counter in the coin door. When START1 or START2 is clocked low, it grounds the START LEDs in the control panel.

The video-output circuit consists of three individual circuits: X-axis, Y-axis, and Z-axis. The X-axis and Y-axis video-output circuits each consist of a digital-to-analog converter (DAC), current-to-voltage converter, two sample and holds, and amplifier. The Z-axis video-output circuit consists of a shift register and a summer.

X and Y Outputs

The DACs (D11 and B11) each receive binary numbers from the vector generator's position counter outputs. These numbers represent the location of the beam on the monitor. For the non-inverted X axis, the numbers range from 0 to 1023, where 0 is at the far left of the monitor screen, 512 is at the center, and 1023 is at the far right. For the non-inverted Y axis, the numbers range from 128 to 996, where 128 is at the bottom of the monitor screen, 512 is at the center, and 996 is at the top. When the X axis and Y axis are inverted, the monitor picture is turned upside down. This is used for a two-player cocktail game.

The DACs convert these binary number inputs to current outputs. The DACs' current outputs are applied to the pin-6 inputs of current-to-voltage converters C12 and A12.

From the current-to-voltage converters, the signal is fed to two sample-and-hold circuits: One is non-inverted and the other is inverted. The non-inverted sample and hold consists of one stage of analog switch D12 and capacitor C89 for the X axis, and B12 and C109 for the Y axis. The inverting sample and hold consists of inverter E12, one stage of analog switch D12, and capacitor C88 for the X axis and B/C12, B12 and C110 for the Y axis.

The sample-and-hold circuits are controlled by SHCON (sample and hold control). SHCON is derived by gating 3 MHz from the microcomputer clock circuitry and VGCK* from the vector generator's state generator. The result of these inputs ensures that the non-inverted and inverted analog signals that are applied to the analog switches have sufficiently stabilized before being applied to the sample-and-hold capacitors.

The output swing of SHCON is -8 to +8 VDC. When SHCON is high, the voltage charges or discharges the sample-and-hold capacitors to the X and Y analog voltage value. The voltages are then applied to the inputs of the second analog switch. These switches select either the non-inverted or inverted X-axis and Y-axis outputs. The outputs are then amplified by the second stages of C12 and A12 for an impedance-matched output to the X and Y inputs to the monitor. Since the monitor doesn't have field-adjustable X and Y gains, the gains are adjustable by variable resistors R120 and R126.

Z Output

The Z-axis video output receives six inputs. BVLD (beam valid), from the output of the vector generator's position counters, tells the Z axis to draw the line. BLANK (vector line blank), from the vector generator's state machine, tells the Z axis to stop drawing a line. SCALEO thru SCALE3 (grey-level shading scale), from the output of the vector generator's data latch, tells the Z axis the grey-level shading of the line that is being drawn on the monitor.

When BVLD and BLANK are both high, a high is clocked through shift register K9 that turns transistor Q3 off. This allows the scale inputs to be passed through transistor Q2. When BLANK goes low, a low is clocked through K9, transistor Q3 turns on, and the signal is grounded at the base of transistor Q2.